The Impact of Land-Surface Wetness Heterogeneity on Mesoscale Heat Fluxes

1994 ◽  
Vol 33 (11) ◽  
pp. 1323-1340 ◽  
Author(s):  
Fei Chen ◽  
Roni Avissar
2007 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Margaret A. LeMone ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Mukul Tewari ◽  
Bart Geerts ◽  
...  

Abstract Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = Rnet − Gsfc, where Rnet is the net radiation and Gsfc is the flux into the soil; Rnet − Gsfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.


2021 ◽  
Author(s):  
Markus Todt ◽  
Pier Luigi Vidale ◽  
Patrick C. McGuire ◽  
Omar V. Müller

<p>Capturing soil moisture-atmosphere feedbacks in a weather or climate model requires realistic simulation of various land surface processes. However, irrigation and other water management methods are still missing in most global climate models today, despite irrigated agriculture being the dominant land use in parts of Asia. In this study, we test the irrigation scheme available in the land model JULES (Joint UK Land Environment Simulator) by running land-only simulations over South and East Asia driven by WFDEI (WATCH Forcing Data ERA-Interim) forcing data. Irrigation in JULES is applied on a daily basis by replenishing soil moisture in the upper soil layers to field capacity, and we use a version of the irrigation scheme that extracts water for irrigation from groundwater and rivers, which physically limits the amount of irrigation that can be applied. We prescribe irrigation for C3 grasses in order to simulate the effects of agriculture, albeit retaining the simpler, widely used 5-PFT (plant functional type) configuration in JULES. Irrigation generally increases soil moisture and evapotranspiration, which results in increasing latent heat fluxes and decreasing sensible heat fluxes. Comparison with combined observational/machine-learning products for turbulent fluxes shows that while irrigation can reduce biases, other biases in JULES, unrelated to irrigation, are larger than improvements due to the inclusion of irrigation. Irrigation also affects water fluxes within the soil, e.g. runoff and drainage into the groundwater level, as well as soil moisture outside of the irrigation season. We find that the irrigation scheme, at least in the uncoupled land-atmosphere setting, can rapidly deplete groundwater to the point that river flow becomes the main source of irrigation (over the North China Plain and the Indus region) and can have the counterintuitive effect of decreasing annual average soil moisture (over the Ganges plain). Subsequently, we will explore the impact of irrigation on regional climate by conducting coupled land-atmosphere simulations.</p>


2004 ◽  
Vol 43 (10) ◽  
pp. 1477-1497 ◽  
Author(s):  
Youlong Xia ◽  
Mrinal K. Sen ◽  
Charles S. Jackson ◽  
Paul L. Stoffa

Abstract This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.


2014 ◽  
Vol 7 (5) ◽  
pp. 6773-6809
Author(s):  
T. Osborne ◽  
J. Gornall ◽  
J. Hooker ◽  
K. Williams ◽  
A. Wiltshire ◽  
...  

Abstract. Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.


2019 ◽  
Vol 20 (8) ◽  
pp. 1511-1531 ◽  
Author(s):  
Jessica M. Erlingis ◽  
Jonathan J. Gourley ◽  
Jeffrey B. Basara

Abstract Backward trajectories were derived from North American Regional Reanalysis data for 19 253 flash flood reports published by the National Weather Service to determine the along-path contribution of the land surface to the moisture budget for flash flood events in the conterminous United States. The impact of land surface interactions was evaluated seasonally and for six regions: the West Coast, Arizona, the Front Range, Flash Flood Alley, the Missouri Valley, and the Appalachians. Parcels were released from locations that were impacted by flash floods and traced backward in time for 120 h. The boundary layer height was used to determine whether moisture increases occurred within the boundary layer or above it. Moisture increases occurring within the boundary layer were attributed to evapotranspiration from the land surface, and surface properties were recorded from an offline run of the Noah land surface model. In general, moisture increases attributed to the land surface were associated with anomalously high surface latent heat fluxes and anomalously low sensible heat fluxes (resulting in a positive anomaly of evaporative fraction) as well as positive anomalies in top-layer soil moisture. Over the ocean, uptakes were associated with positive anomalies in sea surface temperatures, the magnitude of which varies both regionally and seasonally. Major oceanic surface-based source regions of moisture for flash floods in the United States include the Gulf of Mexico and the Gulf of California, while boundary layer moisture increases in the southern plains are attributable in part to interactions between the land surface and the atmosphere.


2011 ◽  
Vol 15 (2) ◽  
pp. 647-666 ◽  
Author(s):  
C. Szczypta ◽  
J.-C. Calvet ◽  
C. Albergel ◽  
G. Balsamo ◽  
S. Boussetta ◽  
...  

Abstract. An evaluation of the global ECMWF atmospheric reanalysis ERA-Interim (with a 0.5° grid) is performed over France, based on the high resolution (8 km) SAFRAN atmospheric reanalysis. The ERA-Interim precipitation, Incoming Solar Radiation (ISR), air temperature, air humidity, and wind speed, are compared with their SAFRAN counterparts. Also, interpolated in situ ISR observations are used in order to consolidate the evaluation of this variable. The daily precipitation estimates produced by ERA-Interim over France correlate very well with SAFRAN. However, the values are underestimated by 27%. A GPCP-corrected version of ERA-Interim is less biased (13%). The ERA-Interim estimates of ISR correlate very well with SAFRAN and with in situ observations on a daily basis. Whereas SAFRAN underestimates the ISR by 6 Wm−2, ERA-Interim overestimates the ISR by 10 Wm−2. In order to assess the impact of the ERA-Interim errors, simulations of the ISBA-A-gs land surface model are performed over the SMOSREX grassland site in southwestern France using ERA-Interim (with and without GPCP rescaling) and SAFRAN. Latent and sensible heat fluxes are simulated, together with carbon dioxide fluxes. The rescaled ERA-Interim performs better than the original ERA-Interim and permits to achieve flux scores similar to those obtained with SAFRAN.


2019 ◽  
Vol 20 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Marika Koukoula ◽  
Efthymios I. Nikolopoulos ◽  
Jonilda Kushta ◽  
Nikolaos S. Bartsotas ◽  
George Kallos ◽  
...  

Abstract Of the boundary conditions that affect the simulation of convective precipitation, soil moisture is one of the most important. In this study, we explore the impact of the soil moisture on convective precipitation, and factors affecting it, through an extensive numerical experiment based on four convective precipitation events that caused moderate to severe flooding in the Gard region of southern France. High-spatial-resolution (1 km) weather simulations were performed using the integrated atmospheric model Regional Atmospheric Modeling System/Integrated Community Limited Area Modeling System (RAMS/ICLAMS). The experimental framework included comparative analysis of five simulation scenarios for each event, in which we varied the magnitude and spatial distribution of the initial volumetric water content using realistic soil moisture fields with different spatial resolution. We used precipitation and surface soil moisture from radar and satellite sensors as references for the comparison of the sensitivity tests. Our results elucidate the complexity of the relationship between soil moisture and convective precipitation, showing that the control of soil water content on partitioning land surface heat fluxes has significant impacts on convective precipitation. Additionally, it is shown how different soil moisture conditions affect the modeled microphysical structure of the clouds, which translates into further changes in the magnitude and distribution of precipitation.


2016 ◽  
Vol 17 (9) ◽  
pp. 2493-2510 ◽  
Author(s):  
Aihui Wang ◽  
Xubin Zeng ◽  
Donglin Guo

Abstract Global land surface hydrology and heat fluxes can be estimated by running a land surface model (LSM) driven by the atmospheric forcing dataset. Previous multimodel studies focused on the impact of different LSMs on model results. Here the sensitivity of the Community Land Model, version 4.5 (CLM4.5), results to the atmospheric forcing dataset is documented. Together with the model default global forcing dataset (CRU–NCEP, hereafter CRUNCEP), three newly developed, reanalysis-based, near-surface meteorological datasets (i.e., MERRA, CFSR, and ERA-Interim) with the precipitation adjusted by the Global Precipitation Climatology Project monthly product were used to drive CLM4.5. All four simulations were run at 0.5° × 0.5° grids from 1979 to 2009 with the identical initialization. The simulated monthly surface hydrology variables, fluxes, and the forcing datasets were then evaluated against various observation-based datasets (soil moisture, runoff, snow depth and water equivalent, and flux tower measurements). To partially avoid the mismatch between model gridbox values and point measurements, three approaches were taken. The model simulations based on three newly constructed forcing datasets are overall better than the simulation from CRUNCEP, in particular for soil moisture and snow quantities. The ensemble mean from the CLM4.5 simulations using the four forcing datasets is generally superior to individual simulations, and the ensemble mean latent and sensible heat fluxes over global land (60°S–90°N) are 42.8 and 40.3 W m−2, respectively. The differences in both precipitation and other atmospheric forcing variables (e.g., air temperature and downward solar radiation) contribute to the differences in simulated results. The datasets are available from the authors for further evaluation and for various applications.


2013 ◽  
Vol 13 (11) ◽  
pp. 29137-29201 ◽  
Author(s):  
B. P. Guillod ◽  
B. Orlowsky ◽  
D. Miralles ◽  
A. J. Teuling ◽  
P. Blanken ◽  
...  

Abstract. The feedback between soil moisture and precipitation has long been a topic of interest due to its potential for improving weather and seasonal forecasts. The generally proposed mechanism assumes a control of soil moisture on precipitation via the partitioning of the surface turbulent heat fluxes, as assessed via the Evaporative Fraction, EF, i.e. the ratio of latent heat to the sum of latent and sensible heat, in particular under convective conditions. Our study investigates the poorly understood link between EF and precipitation by investigating the impact of before-noon EF on the frequency of afternoon precipitation over the contiguous US, using a statistical analysis of the relationship between multiple datasets of EF and precipitation. We analyze remote sensing data products (EF from GLEAM, Global Land Evaporation: the Amsterdam Methodology, based on satellite observations; and radar precipitation from NEXRAD, the NEXt generation weather RADar system), FLUXNET station data, and the North American Regional Reanalysis (NARR). While most datasets agree on the existence of regions of positive relationship between between EF and precipitation in the Eastern and Southwestern US, observation-based estimates (GLEAM, NEXRAD and to some extent FLUXNET) also indicate a strong relationship in the Central US which is not found in NARR. Investigating these differences, we find that much of these relationships can be explained by precipitation persistence alone, with ambiguous results on the additional role of EF in causing afternoon precipitation. Regional analyses reveal contrasting mechanisms over different regions. Over the Eastern US, our analyses suggest that the apparent EF-precipitation coupling takes place on a short day-to-day time scale and is either atmospherically controlled (from precipitation persistence and potential evaporation) or driven by vegetation interception and subsequent re-evaporation (rather than soil moisture and related plant transpiration/bare soil evaporation), in line with the high forest cover and the wet regime of that region. Over the Central and Southwestern US, the impact of EF on convection triggering is additionally linked to soil moisture variations, owing to the soil moisture–limited climate regime.


Sign in / Sign up

Export Citation Format

Share Document